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We consider Fabry-Perot cavity resonance in periodic stacks of anisotropic layers with misaligned in-plane
anisotropy at the frequency close to a photonic band edge. We show that in-plane dielectric anisotropy can
result in a dramatic increase in field intensity and group delay associated with the transmission resonance. The
field enhancement turns out to be proportional to fourth degree of the number N of layers in the stack. By
contrast, in common periodic stacks of isotropic layers, those effects are much weaker and proportional to N2

Thus, the anisotropy allows one to drastically reduce the size of the resonance cavity with similar performance.
The key characteristic of the periodic arrays with gigantic transmission resonance is that the dispersion curve
��k� at the photonic band edge has the degenerate form �����k�4, rather than the regular form ��

���k�2. This can be realized in specially arranged stacks of misaligned anisotropic layers. The degenerate
band-edge cavity resonance with similar outstanding properties can also be realized in a waveguide environ-
ment, as well as in a linear array of coupled multimode resonators, provided that certain symmetry conditions
are in place.
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I. INTRODUCTION

The subject of this paper is the Fabry-Pérot cavity reso-
nance in periodic layered structures. This phenomenon,
known for many decades, is also referred to as the transmis-
sion band-edge resonance, because it occurs in the vicinity
of photonic band-edge frequencies in finite photonic crystals
and is accompanied by sharp transmission peaks. This basic
effect can occur in a finite periodic array of any two alter-
nating materials with different refractive indices. It can also
be realized in a waveguide environment, or in a finite array
of coupled resonators. The only essential requirements are
�a� low absorption, �b� the appropriate number N of unit cells
in the periodic array, and �c� the presence of a frequency gap
�a stop band� in the frequency spectrum of the periodic array.
The latter is a universal property of almost any lossless spa-
tially periodic structure. This phenomenon has found numer-
ous and diverse practical applications in optics. Below we
briefly outline some basic features of the classical band-edge
resonance in periodic stacks of isotropic layers. We highlight
only those points that are necessary for the following com-
parative analysis of stacks involving anisotropic layers. More
detailed information on the relevant aspects of electrodynam-
ics of layered dielectric media can be found in an extensive
literature on the subject �see, for example, �1–9�, and refer-
ences therein�.

Consider a simplest periodic array of alternating dielectric
layers A and B, as shown in Fig. 1�a�. The layers are made of
transparent isotropic materials with different refractive indi-
ces nA and nB. Such periodic stacks are also referred to as
one-dimensional photonic crystals. The electromagnetic
eigenmodes of the periodic structure in Fig. 1�a� are Bloch
waves with a typical wave number–frequency diagram
shown in Fig. 1�b�.

Consider now a finite periodic stack composed of N unit
cells L in Fig. 1�a�. Such a stack is commonly referred to as
a Fabry-Pérot cavity. If the number N of the double layers L
is significant, the stack periodicity causes coherent interfer-

ence of light scattered by the layers interfaces. In practice,
periodic stacks having as few as several periods L can dis-
play almost total reflectivity at the band-gap frequencies,
provided that the refractive indices nA and nB of the adjacent
layers differ significantly.

A typical frequency dependence of the finite stack trans-
mittance is presented in Fig. 2. The frequency range shown
includes the vicinity of the photonic band edge �BE� g in Fig.
1�b�. The sharp transmission peaks below the photonic band-
edge frequency �g correspond to transmission band-edge
resonances, also known as Fabry-Pérot cavity resonances. At
each resonance, the electromagnetic field inside the periodic
stack is close to a standing wave composed of a forward and
a backward Bloch eigenmode with large and nearly equal
amplitudes. The slab boundaries coincide with the standing
wave nodes, where the forward and backward Bloch compo-
nents interfere destructively, as illustrated in Figs. 3 and 4.
The latter circumstance determines the wave numbers of the

FIG. 1. �Color online� �a� Periodic stack composed of two alter-
nating layers A and B, each of which is made of isotropic transpar-
ent material. L is the unit cell of the periodic structure. The physical
characteristics of the stack are specified in the Appendix. �b� The
corresponding k-� diagram. The wave number k and the frequency
� are expressed in units of 1 /L and c /L. The point g at the Bril-
louin zone boundary designates the edge of the lowest frequency
band.
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forward and backward Bloch components at the resonance
frequencies

ks � kg ±
�

NL
s, s = 1,2,… , �1�

where s is the order number of the resonant peak in Fig. 2,
and kg is the wave number corresponding to the photonic
band edge. In our case, kg=� /L. The resonance frequencies
themselves can be expressed in terms of the dispersion rela-
tion ��k� of the corresponding frequency band. Indeed, just
below the photonic band edge g in Fig. 1�b�, the dispersion
relation ��k� can be approximated by the quadratic parabola

� � �g +
�g�

2
�k − kg�2 where �g� = � �2�

�k2 �
k=kg

� 0. �2�

This relation together with �1� yield the frequencies of the
resonant transmission peaks in Fig. 2:

�s�N� � �g +
�g�

2
� �

NL
s�2

, s = 1,2,… , �3�

where �g=��kg� is the band-edge frequency. For example,
the transmission peak 1 closest to the photonic band edge is
located at

�1�N� � �g +
�g�

2
� �

NL
�2

. �4�

The dependence �3� is illustrated in Fig. 2.
Electromagnetic field distribution inside the stack at the

frequency of band-edge resonance is shown in Figs. 3 and 4
for the first two transmission resonances, respectively. For a
given amplitude �I of the incident wave, the maximal field
intensity 	��z�	2 inside the slab depends on the number N of
the double layers in the stack and on the order number s of
the resonance peak in Fig. 2

max	��z�	2 � 	�I	2�N

s
�2

. �5�

The maximal field intensity �5� is proportional to the squared
thickness of the slab and, for a large N, is greatly enhanced
compared to that of the incident light. By contrast, at the slab
boundaries at z=0 and z=D=NL, the field amplitude ��z�
always remains comparable to �I to satisfy the electromag-
netic boundary conditions �47�. At frequencies outside the
resonance transparency peaks, the field amplitude inside the
stack drops sharply.

The exact definition of the physical values plotted in
Figs. 3 and 4, as well as the numerical parameters of the
periodic stacks used to generate these plots, are given in the
Appendix.

The expressions �1�–�5� are valid if N�1 and only apply
to the transmission resonances close enough to the photonic
band edge. In further consideration, we will focus on the
most powerful first resonance s=1, closest to the photonic
band edge.

Above, we outlined some basic features of the transmis-
sion band-edge resonance in finite stacks of isotropic layers.
The question we would like to address in this paper is
whether the presence of anisotropic layers in a finite periodic
stack can qualitatively change the nature of the Fabry-Perot
cavity resonance. We will show that, indeed, in periodic
stacks involving anisotropic layers, the transmission reso-
nance can be significantly stronger, compared to what is
achievable with common periodic stacks of isotropic layers.
For instance, in the periodic stack shown in Fig. 5, the field
intensity associated with the transmission band-edge reso-
nances can be proportional to N4, rather than N2. The latter
implies that a stack of N anisotropic layers can perform as

FIG. 3. �Color online� Smoothed intensity distribution �A3�
iside periodic stack at the frequency �1�N� in Eq. �4� of the first
transmission resonance. The amplitude of the incident wave is
unity. The distance z from the left boundary is expressed in units of
L. At the stack boundaries at z=0 and NL, the field intensity is of
the order of unity, while inside the slab it is enhanced by factor N2.
N= �a� 16 and �b� 32.

FIG. 4. �Color online� The same as in Fig. 3, but at the fre-
quency �2�N� in Eq. �3� of the second transmission resonance in
Figs. 2�a� and 2�b�, respectively.

FIG. 2. �Color online� Typical transmission spectrum of finite
periodic stacks composed of different numbers N of unit cells L
shown in Fig. 1. The sharp transmission peaks below the band-edge
frequency �g are associated with photonic band-edge resonance.
N= �a� 16 and �b� 32.
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well as a common stack of N2 isotropic layers. And this is a
huge difference. The physical reason for this is that periodic
stacks of anisotropic layers can support the kind of k-� dia-
grams that are impossible in stacks of isotropic layers. Spe-
cifically, a dispersion curve ��k� of the stack in Fig. 5 can
develop a degenerate band edge, as shown in Fig. 6�b�. Just
below the degenerate band edge d, the dispersion curve can
be approximated as

� � �d +
�d��

24
�k − kd�4 where �d�� = � �4�

�k4 �
k=kd

� 0,

�6�

which implies a huge density of modes. And this is what
makes all the difference compared to the case �2� of a regular
band edge.

For convenience, the domain of definition of the Bloch
wave number k in Fig. 6 is chosen between 0 and 2� /L.
Since the Bloch wave number is defined up to a multiple of
2� /L, the representation in Fig. 6 is equivalent to that in Fig.
1�b�. Note that the points a, g, and d in Figs. 6�a� and 6�b� lie
at the Brillouin zone boundary at k=� /L.

In Fig. 7 we present the transmission dispersion of the
finite periodic stacks in Fig. 5 composed of 32 unit cells L
and having the k-� diagram in Fig. 6�b�. The frequency
range shown includes the degenerate band edge �DBE� at
�=�d. The field intensity distribution at the frequency of the
first transmission resonance 1 is shown in Fig. 8�b�. One can
see that for a given N, the resonant field intensity in Fig. 8 is
significantly larger compared to that of the vicinity of a regu-
lar band edge, shown in Fig. 3. Specifically, in the case of a
degenerate band edge

max	��z�	2 � 	�I	2�N

s
�4

, �7�

compared to the estimation �5� related to a regular band
edge. The transmission bandwidth in the case of the DBE
appears to be much smaller.

In practice, the field amplitude associated with the trans-
mission resonance is limited not only by the number of lay-
ers in the stack, but also by such factors as absorption, non-
linearity, imperfections of the periodic array, stack
dimensions in the X-Y plane, incident radiation bandwidth,
etc. All else being equal, the stack with degenerate band edge
can have much fewer layers and, therefore can be much thin-
ner compared to a regular stack of isotropic layers with simi-
lar performance. Much smaller dimensions can be very
attractive for a variety of practical applications. On the

FIG. 5. �Color online� Periodic stack capable of supporting
k-� diagram with degenerate band edge. A unit cell L includes three
layers: two birefringent layers A1 and A2 with different orientations
�1 and �2 of the respective anisotropy axes in the X-Y plane, and
one isotropic B layer. The misalignment angle �=�1−�2 between
adjacent A layers must be different from 0 and � /2.

FIG. 6. �Color online� The first
band of the k-� diagram of the pe-
riodic stack in Fig. 5 for four dif-
ferent values of the B-layer thick-
ness, DB. �a� DB=0.758 91L; this
is the case of a regular band edge
g. �b� DB=0.458 91L; in this case
the upper dispersion curve devel-
ops a degenerate band edge d. �c�
DB=0.358 91L; this is the case of
a double band edge. �d� DB=0; in
this case the two intersecting dis-
persion curves correspond to the
pair of decoupled Bloch waves
with different symmetries. The
physical parameters of the peri-
odic structure are specified in the
Appendix .
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downside, the realization of a k-� diagram having a disper-
sion curve with a DBE requires more sophisticated periodic
structures, such as the one shown in Fig. 5.

A similar effect can also be achieved in the waveguide
environment, as well as in finite periodic arrays of coupled
resonators. The essential requirement is the existence of de-
generate band edge �6� on the k-� diagram of the periodic
array.

The rest of the paper is organized as follows.
In Sec. II we briefly outline the electrodynamics of peri-

odic stratified media and examine the relation between an-
isotropy of the layers and the k-� diagram of the stack. We
show that at the frequency of degenerate band edge d, the
4	4 transfer matrix of a unit cell L cannot be diagonalized
or even reduced to the block-diagonal form. Based on this,
we establish necessary symmetry conditions for a periodic
stack to develop a degenerate band edge �6� and to display
the peculiar resonance properties associated with it. We
prove that such periodic stacks must have at least two mis-
aligned anisotropic layers in a unit cell, as shown in the
example in Fig. 5.

In Sec. III, we consider the scattering problem for a finite
periodic stack. We analyze the eigenmode composition of
electromagnetic field at the frequency of transmission reso-
nance near the degenerate band edge. We show that in con-
trast to the case �5� of a regular band edge, in the degenerate
band-edge case �7� the resonance field inside the stack does
not reduce to a superposition of forward and backward

propagating eigenmodes. Instead, the contribution of evanes-
cent eigenmodes becomes equally important and leads to
much stronger dependence �7� of the resonance field inten-
sity on the number of layers in the stack.

The physical and geometrical parameters of stacks used
for numerical simulations are specified in the Appendix.

II. ELECTRODYNAMICS OF PERIODIC STACKS OF
ANISOTROPIC LAYERS

This section starts with a brief description of some basic
electrodynamic properties of periodic layered media com-
posed of lossless anisotropic layers. Then we turn to the
particular case of periodic stacks with degenerate band edge.
The scattering problem for periodic finite stacks, including
the Fabry-Pérot cavity resonance in the vicinity of degener-
ate photonic band edge will be considered in the next
section.

A. Transverse electromagnetic waves in stratified media

Our consideration is based on time-harmonic Maxwell
equations in heterogeneous nonconducting media

� 	 E� �r�� = i
�

c
B� �r��, � 	 H� �r�� = − i

�

c
D� �r�� , �8�

where the electric and magnetic fields and inductions are
related by the linear constitutive equations

D� �r�� = 
̂�r��E� �r��, B� �r�� = �̂�r��H� �r�� . �9�

In further consideration we assume the following.
�i� The direction of plane wave propagation coincides

with the normal z to the layers.
�ii� The second-rank tensors 
̂�r�� and �̂�r�� are dependent

on a single Cartesian coordinate z, normal to the layers.
�iii� The z direction is a twofold symmetry axis of the

stack, implying that the anisotropy axes of individual layers
are either parallel, or perpendicular to the z direction. The
latter defines the case of in-plane anisotropy.

Under the above restrictions, the normal field components
Ez and Hz of electromagnetic wave are zeros, and the system
�8� of six time-harmonic Maxwell equations reduces to the
following system of four ordinary linear differential equa-
tions for the transverse field components:

�

�z
��z� = i

�

c
M�z���z� where ��z� = 


Ex�z�
Ey�z�
Hx�z�
Hy�z�

� . �10�

The 4	4 matrix M�z� in Eq. �10� is referred to as the �re-
duced� Maxwell operator.

In a lossless nonmagnetic medium with in-plane aniso-
tropy, the electric permittivity and magnetic permeability
tensors have the form

FIG. 7. �Color online� The transmission spectrum of periodic
stack with the k-� diagram in Fig. 6�b�. The stack is composed of
N=32 three-layered unit cells L in Fig. 5. The sharp transmission
peaks below the degenerate band-edge frequency �d are associated
with Fabry-Pérot cavity resonances.

FIG. 8. �Color online� Smoothed intensity distribution inside
periodic stack in Fig. 5 at the frequency of the first Fabry-Pérot
resonance �s=1�, closest to degenerate band edge d. The amplitude
of the incident wave is unity. At the stack boundaries at z=0 and
NL, the field intensity is of the order of unity, while inside the slab
electromagnetic energy density is enhanced by a factor N4. N= �a�
16 and �b� 32.
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̂ = 

xx 
xy 0


xy 
yy 0

0 0 
zz
�, �̂ = 1̂. �11�

This yields the following explicit expression for the Maxwell
operator M�z� in Eq. �10�:

M�z� = 

0 0 0 1

0 0 − 1 0

− 
xy − 
yy 0 0


xx 
xy 0 0
� , �12�

where the components of the permittivity tensor may vary
from layer to layer.

1. The transfer matrix formalism

The Cauchy problem

�

�z
��z� = i

�

c
M�z���z�, ��z0� = �0 �13�

for the reduced Maxwell equation �10� has a unique solution

��z� = T�z,z0���z0� , �14�

where the 4	4 matrix T�z ,z0� is referred to as the transfer
matrix. The transfer matrix �14� uniquely relates the values
of time-harmonic electromagnetic field � at any two points z
and z0 of the stratified medium. From the definition �14�, it
follows that

T�z,z0� = T�z,z��T�z�,z0�, T�z,z0� = T−1�z0,z�, T�z,z� = I .

�15�

The transfer matrix of a stack of layers is defined as

TS = T�D,0� ,

where z=0 and D are the stack boundaries. The greatest ad-
vantage of the transfer matrix formalism stems from the fact
that the transfer matrix of an arbitrary stack is a sequential
product of the transfer matrices Tm of the constitutive layers

TS = �
m

Tm. �16�

If the individual layers m are homogeneous, the correspond-
ing single-layer transfer matrices Tm can be explicitly ex-
pressed in terms of the respective Maxwell operators Mm

Tm = exp�iDmMm� , �17�

where Dm is the thickness of the mth layer. The explicit
expression for the Maxwell operator Mm of a uniform dielec-
tric layer with in-plane anisotropy is given by Eq. �12�. Thus,
Eq. �16� together with Eqs. �12� and �17� provide an explicit
analytical expression for the transfer matrix TS of a stack of
dielectric layers with in-plane anisotropy.

The 4	4 transfer matrix of an arbitrary lossless stratified
medium displays the fundamental property of J unitarity �15�

T† = JT−1J where J = 

0 0 0 1

0 0 − 1 0

0 − 1 0 0

1 0 0 0
� , �18�

which implies, in particular, that

	detT	 = 1. �19�

Different versions of the 4	4 transfer matrix formalism
have been used in electrodynamics of stratified media com-
posed of birefringent and/or gyrotropic layers for decades
�see, for example, �10–12� and references therein�. In this
paper we use exactly the same notations and terminology as
in our previous publications �13–16� on electrodynamics of
stratified media.

B. Eigenmodes in periodic layered media

In a periodic layered medium, all material tensors are pe-
riodic functions of z, and so is the 4	4 matrix M�z� in Eq.
�10�. Usually, the solutions �k�z� of the reduced Maxwell
equation �10� with the periodic M�z� can be chosen in the
Bloch form

�k�z + L� = eikL�k�z� , �20�

where the Bloch wave number k is defined up to a multiple
of 2� /L. The definition �14� of the transfer matrix together
with Eq. �20� yields

T�z + L,z��k�z� = eikL�k�z� . �21�

Introducing the transfer matrix of a unit cell L

TL = T�L,0� , �22�

we have from Eq. �21�

TL�k = eikL�k where �k = �k�0� . �23�

Thus, the eigenvectors of the transfer matrix TL of the unit
cell are uniquely related to the Bloch solutions �k�z� of the
reduced Maxwell equation �10�,

�i = �i�0�, i = 1,2,3,4. �24�

The corresponding four eigenvalues

Xi = eikiL, i = 1,2,3,4, �25�

of TL are the roots of the characteristic polynomial F4�X� of
the fourth degree

F4�X� = det�TL − XI� = 0. �26�

The unit cell of a periodic stack can be chosen differently.
For example, the choice A1-B-A2 specified in Fig. 5 is as
good as A2-A1-B. A different choice of a unit cell corre-
sponds to its shift in the z direction and results in the follow-
ing transformation of the corresponding transfer matrix TL:

TL� = T�0,Z�TLT�Z,0� = �T�Z,0��−1TLT�Z,0� , �27�

where Z is the amount of the shift. The modified transfer
matrix is similar to the original one and has the same set of
eigenvalues.
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For any given �, the characteristic equation �26� defines a
set of four eigenvalues �25�. Real k �or, equivalently, 	X	=1�
correspond to propagating Bloch modes, while complex k
�or, equivalently, 	X	�1� correspond to evanescent modes.

The J unitarity �18� of TL imposes the following restric-
tion on its eigenvalues �25�:


Xi
−1� � 
Xi

*�, i = 1,2,3,4, �28�

or, equivalently,


ki� � 
ki
*�, i = 1,2,3,4, �29�

for any given �. In view of the relations �28� and �29�, one
can distinguish the following three different situations.

�A� All four wave numbers are real,

k1 � k1
*, k2 � k2

*, k3 � k3
*, k4 � k4

*. �30�

In the example in Fig. 6, this case relates to the frequency
range

0 � � � �a. �31�

In this case, all four Bloch eigenmodes are propagating.
�B� Two wave numbers are real and the other two are

complex,

k1 = k1
*, k2 = k2

*, k4 = k3
* where k3 � k3

*, k4 � k4
*.

�32�

This case relates to the frequency range

�a � � � �g �33�

in Fig. 6�a�, or the frequency range

�a � � � �d �34�

in Fig. 6�b�. In both cases �33� and �34�, two of the four
Bloch eigenmodes are propagating and the remaining two
are evanescent with complex conjugated wave numbers.

�C� All four wave numbers are complex,

k2 = k1
*, k4 = k3

* where k1 � k1
*, k2 � k2

*, k3 � k3
*,

k4 � k4
*. �35�

This situation relates to a frequency gap, where all four
Bloch eigenmodes are evanescent. In the example in Fig. 6,
this case corresponds to

�g � � or �d � � . �36�

Notice that the case B of two propagating and two eva-
nescent modes can only occur in periodic stacks of aniso-
tropic layers. If all the layers in a unit cell are isotropic, the
four Bloch eigenmodes are either all propagating or all eva-
nescent, as is the case in Fig. 1. For a given frequency �, the
four Bloch eigenmodes correspond to two different polariza-
tions and two opposite directions of propagation.

1. Non-Bloch solutions at stationary points of the k-� diagram

So far, we have considered only the cases where all four
solutions for the reduced Maxwell equation �10� can be cho-

sen in the Bloch form �20�. All such cases fall into one of the
following three categories: �A� all four eigenmodes are
propagating, �B� two modes are propagating and the other
two are evanescent, �C� all four eigenmodes are evanescent.
This classification of the eigenmodes does not apply at the
frequencies of stationary points on the k-� diagram, where
the group velocity u of some of the propagating modes
vanishes,

u = d�/dk = 0. �37�

At a stationary point of a dispersion curve, not all four solu-
tions of the Maxwell equation �10� are Bloch waves, as de-
fined in �20�. Instead, some of the solutions can be algebra-
ically diverging non-Bloch eigenmodes. Such eigenmodes
can be essential for understanding the resonance effects in
finite and semi-infinite periodic arrays.

Let us consider the situation at stationary points �37� on
the k-� diagram in terms of the matrix TL. Although at any
given frequency �, the reduced Maxwell equation �10� has
exactly four linearly independent solutions, it does not imply
that the respective transfer matrix TL in �23� must have four
linearly independent eigenvectors �23�. Indeed, although the
matrix TL is invertible, it is neither Hermitian, nor unitary
and, therefore, may not be diagonalizable. Specifically, if the
frequency approaches one of the stationary points �37�, some
of the eigenvectors �k in �23� become nearly parallel to each
other. Eventually, as � reaches the stationary point value, the
number of linearly independent eigenvectors �k becomes
less than four, and the relation �24� does not apply at that
point.

Examples of different stationary points �37� are shown in
Fig. 6. Using these examples, let us take a closer look at
these special frequencies.

At the frequencies �g of the photonic band edge g in Fig.
6�a�, the four eigenmodes include one propagating mode
with k=� /L and zero group velocity; one non-Bloch eigen-
mode linearly diverging with z; and a pair of evanescent
modes with equal and opposite imaginary wave numbers.

At the frequencies �a corresponding to the point a in Fig.
6, the four solutions of Eq. �10� include the propagating
mode with k=� /L and zero group velocity; one non-Bloch
eigenmode linearly diverging with z; and a pair of propagat-
ing modes having equal and opposite group velocities and
belonging to the dispersion curve other than the one contain-
ing the point a.

Of special interest here is the frequency �d of the degen-
erate photonic band edge d in Fig. 6�b�. In this case, the four
solutions of Eq. �10� include �17� the propagating mode with
k=� /L and zero group velocity, and three non-Bloch eigen-
modes diverging as z, z2, and z3, respectively.

At any particular frequency, the existence of non-Bloch
eigenmodes can be directly linked to the canonical Jordan
form of the corresponding transfer matrix TL. Indeed, the 4
	4 matrix TL, being invertible, can have one of the follow-
ing five different canonical forms

T̃1 = 

X1 0 0 0

0 X2 0 0

0 0 X3 0

0 0 0 X4

� ,
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T̃21 = 

X1 1 0 0

0 X1 0 0

0 0 X3 0

0 0 0 X4

�, T̃22 = 

X1 1 0 0

0 X1 0 0

0 0 X2 1

0 0 0 X2

� ,

T̃3 = 

X1 1 0 0

0 X1 1 0

0 0 X1 0

0 0 0 X2

�, T̃4 = 

X 1 0 0

0 X 1 0

0 0 X 1

0 0 0 X
� , �38�

of which all but T̃1 have nontrivial Jordan blocks and, there-
fore, are not diagonalizable. Each m	m Jordan block is as-
sociated with a single eigenvector of the corresponding T
matrix. Therefore, the total number of eigenvectors of the
different 4	4 matrices in �38� is less than the number 4 of
the solutions for the reduced Maxwell equation �10�. The

only exception is the diagonalizable case T̃1, where the four
TL eigenvectors correspond to four Bloch eigenmodes, as
prescribed by �24�. Generally, each nontrivial m	m Jordan
block of the T matrix is associated with the m eigenmodes of
Eq. �10�, of which one is a propagating Bloch eigenmode
with zero group velocity, and the other m−1 are non-Bloch
eigenmodes algebraically diverging with z. The details can
be found in any course on linear algebra, for example,
�18–21�. Let us consider each case separately.

At general frequencies, different from those of stationary
points �37�, the 4	4 matrix TL is always diagonalizable. Its

canonical �diagonalized� form is trivial and coincides with T̃1
in �38�. The four eigenvectors are defined in �24�. All the
possibilities here reduce to one of the three cases A, B, or C
described earlier in this section. None of them involves non-
Bloch solutions.

At the frequency �g of a regular photonic band edge in
Fig. 6�a�, the canonical Jordan form of the respective transfer

matrix is T̃21 in �38�, where

X1 = − 1, X3 = X3
* = X4

−1 � 1.

The 2	2 Jordan block relates to one propagating Bloch
mode with k=� /L and zero group velocity, and one non-
Bloch linearly diverging eigenmode. The pair of real eigen-
values X3 and X4=X3

−1 relate to the pair of evanescent modes
at �=�g.

By contrast, at the frequency of photonic band edge g in
Fig. 1�b� related to the stack of isotropic layers, there are no
evanescent modes. The canonical Jordan form of the corre-

sponding transfer matrix coincides with T̃22 in �38�, where

X1 = X2 = − 1.

Each of the two 2	2 identical Jordan blocks relates to one
propagating Bloch mode with k=� /L and zero group veloc-
ity, as well as one non-Bloch linearly diverging eigenmode.

The two Jordan blocks of T̃22 correspond to two different
polarizations of light.

At the frequency �a in Fig. 6, the canonical Jordan form

of the respective transfer matrix is T̃21, where

X1 = − 1, X3 = X4
*, 	X3	 = 	X4	 = 1.

The double eigenvalue X1=−1 of the 2	2 Jordan block re-
lates to one propagating Bloch mode with k=� /L and zero
group velocity, and one non-Bloch linearly diverging eigen-
mode. The pair of complex eigenvalues X3 and X4=X3

* relate
to the pair of propagating modes having equal and opposite
group velocities and belonging to the dispersion curve other
than the one containing the point a.

The canonical form T̃3 in �38� relates to a k-� diagram
with stationary inflection point. Such a stationary point can-
not be realized in a reciprocal periodic stack at normal light
propagation �14,15�.

Of particular interest here is the case �6� of a degenerate
band edge. At the degenerate band-edge frequency �d, the

canonical Jordan form of the transfer matrix is T̃4 in �38�,

TL � T̃4 = 

X 1 0 0

0 X 1 0

0 0 X 1

0 0 0 X
� where X = ± 1. �39�

More specifically, in the case shown in Fig. 6�b�,

X = Xd = eikdL = − 1 at � = �d.

The matrix �39� presents a single 4	4 Jordan block and has
a single eigenvector, corresponding to the propagating eigen-
mode with k=� /L and zero group velocity. The other three
solutions for the Maxwell equation �10� at �=�d are non-
Bloch eigenmodes diverging as z, z2, and z3, respectively.

If the frequency � deviates from the stationary point �37�,
the transfer matrix TL becomes diagonalizable with the ca-

nonical Jordan form T̃1 in �38�. The perturbation theory re-
lating the non-Bloch eigenmodes at the frequency of the de-
generate band edge to the Bloch eigenmodes in the vicinity
of this point is presented in �17�.

C. Symmetry conditions for the existence of a degenerate
band edge

Not all periodic stacks can develop a degenerate band
edge, defined in Eq. �6�. Some fundamental restrictions can
be derived from symmetry considerations. These restrictions
stem from the fact that at the frequency �d of the degenerate
band edge, the transfer matrix TL must have the Jordan ca-
nonical form �39�. Such a matrix cannot be reduced to a
block-diagonal form, let alone diagonalized. Therefore, a
necessary condition for the existence of degenerate band
edge is that the symmetry of the periodic array does not
impose the reducibility of the transfer matrix TL to a block-
diagonal form.

The above condition does not imply that the transfer ma-
trix TL must not be reducible to a block-diagonal form at any
frequency � on the k-� diagram. Indeed, at a general fre-
quency �, the matrix TL is certainly reducible, and even di-
agonalizable. The strength of the symmetry-imposed reduc-
ibility is that it leaves no room for exceptions, such as the
frequency �d of degenerate band edge, where the transfer
matrix TL must not be reducible to a block-diagonal form.
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Therefore, in the case of symmetry-imposed reducibility, the
very existence of a degenerate band edge is ruled out. Ob-
serve that in most periodic layered structures, the symmetry
of the periodic array does require the matrix TL to be similar
to a block-diagonal matrix at all frequencies. In all these
cases, the stack symmetry is incompatible with the existence
of degenerate band edge on the k-� diagram.

Let us apply the above criterion to some specific cases.
In periodic stacks of isotropic layers, the Maxwell equa-

tions for the waves with the x and y polarizations are iden-
tical and decoupled, implying that the respective transfer ma-
trix can be reduced to the block-diagonal form

T̃L = 

T11 T12 0 0

T21 T22 0 0

0 0 T11 T12

0 0 T21 T22

� . �40�

The two identical blocks in �40� correspond to two different
polarizations of light. The characteristic polynomial F4�X� of
the block-diagonal matrix �40� factorizes into a product of
two identical second-degree polynomials related to electro-
magnetic waves with the x and y polarizations, respectively,

F4�X� = F2�X�F2�X� . �41�

The block-diagonal structure of the matrix �40� rules out the
existence of a degenerate band edge in periodic stacks of
isotropic layers. In fact, the transfer matrix TL in this case
can only have the following two canonical forms:

T̃1 = 

X 0 0 0

0 X−1 0 0

0 0 X 0

0 0 0 X−1
�, T̃22 = 


±1 1 0 0

0 ±1 0 0

0 0 ±1 1

0 0 0 ±1
� ,

compatible with �40�. The case T̃1 relates to a general fre-

quency, while the case T̃22 relates to a photonic band edge,
like the one shown in Fig. 1�b�.

Let us now turn to the situation where all or some of the
layers of the periodic stack are birefringent. The in-plane
dielectric anisotropy �11� may allow for a degenerate band
edge on the k-� diagram, but not automatically.

Let us start with the simplest periodic array in which all
anisotropic layers of the stack have aligned in-plane aniso-
tropy. The term “aligned” means that one can choose the
directions of the in-plane Cartesian axes x and y so that the
permittivity tensors in all layers are diagonalized simulta-
neously. In this setting, the Maxwell equations for the waves
with the x and y polarizations are still separated, implying
that the respective transfer matrix can be reduced to the
block-diagonal form,

T̃L = 

T11 T12 0 0

T21 T22 0 0

0 0 T33 T34

0 0 T43 T44

� . �42�

The two blocks in �42� correspond to the x and y polariza-
tions of light. The fourth degree characteristic polynomial of
the block-diagonal matrix �42� factorizes into the product

F4�X� = Fx�X�Fy�X� , �43�

where Fx�X� and Fy�X� are independent second-degree poly-
nomials related to electromagnetic waves with the x and y
polarizations, respectively. The typical k-� diagram in this
case will be similar to that shown in Fig. 6�a� with two
separate curves related to two linear polarizations of light.
Again, the block-diagonal structure of the matrix �42� rules
out the existence of a degenerate band edge in periodic
stacks with aligned anisotropic layers. The transfer matrix TL
in this case can only have the following two canonical forms:

T̃1 = 

X1 0 0 0

0 X1
−1 0 0

0 0 X2 0

0 0 0 X2
−1
�, T̃22 = 


±1 1 0 0

0 ±1 0 0

0 0 X 0

0 0 0 X−1
� ,

compatible with �42�. The case T̃1 relates to a general fre-

quency, while the case T̃22 relates to a photonic band edge.
As we have seen, the presence of anisotropic layers may

not necessarily lift the symmetry prohibition for the degen-
erate band edge, because the symmetry of the periodic array
may still be incompatible with the canonical Jordan form
�39�. Generally if the space symmetry group G of the layered
structure includes a mirror plane m� parallel to the z direc-
tion, this would guarantee the reducibility of the matrix TL to
a block-diagonal form. Indeed, a standard line of reasoning
gives that if m� �G, and the y axis is chosen perpendicular to
the mirror plane m�, then the waves with the x and y polar-
izations have different parity with respect to the symmetry
operation of reflection and, therefore, are decoupled. The lat-
ter leads to reducibility of the matrix TL to the block-
diagonal form �42�. Thus, a formal necessary condition for
the existence of a degenerate band edge on the k-� diagram
can be written as follows:

m� � G . �44�

None of the common periodic layered structures satisfy
this criterion and, therefore, none of them can develop the
degenerate band edge. For example, even if anisotropic lay-
ers are present, but the anisotropy axes in all anisotropic
layers are either aligned or perpendicular to each other, the
symmetry group G of the stack still has the mirror plane m�,
which guarantees the separation of the x and y polarizations
and the reducibility of the corresponding transfer matrix TL
to the block-diagonal form �42�. The only way to satisfy the
condition �44�, and thereby to allow for the degenerate band
edge on the k-� diagram, is to have at least two misaligned
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anisotropic layers in a unit cell with the misalignment angle
being different from 0 and � /2, as shown in the example in
Fig. 5.

Observe that the presence of B layers in the periodic array
in Fig. 5 is also essential, unless the two anisotropic layers
A1 and A2 have different thicknesses or are made of different
anisotropic materials. In Fig. 5, the layers A1 and A2 differ
only by their orientation in the x-y plane, but otherwise they
are identical. In such a case, if the B layers are removed, the
point symmetry group of the periodic stack in Fig. 5 rises
from D2 to D2h, acquiring the glide mirror plane m�. This,
according to the criterion �44�, imposes the reducibility of
the matrix TL to the block-diagonal form �42�, regardless of
the misalignment angle between the adjacent A layers. The
symmetry-imposed reducibility rules out the possibility of
the degenerate band edge �6�. The k-� diagram of the peri-
odic stack in Fig. 5 with the B layers removed is shown in
Fig. 6�d�.

In the numerical example considered in the next section,
the B layers are simply empty gaps of certain thickness DB
between the adjacent double layers A1-A2. The misalignment
angle is chosen � /4. By changing the thickness DB of the
gap B, one can change the k-� diagram of the periodic stack,
as shown in Fig. 6. A similar effect can be achieved by
changing the misalignment angle between the adjacent A
layers.

III. TRANSMISSION RESONANCE IN THE VICINITY OF
THE DEGENERATE BAND EDGE

A. Scattering problem for periodic semi-infinite stack

To solve the scattering problem for a plane monochro-
matic wave incident on a finite stack of anisotropic layers we
use the following standard approach based on the 4	4 trans-
fer matrix.

Let �I�z�, �R�z�, and �P�z� be the incident, reflected, and
passed plane waves in vacuum. Allowing for general elliptic
polarization of the waves, we have

�I�z� = 

Ax

Ay

− Ay

Ax

�ei��/c�z, �R�z� = 

Rx

Ry

Ry

− Rx

�e−i��/c�z,

�P�z� = 

Px

Py

− Py

Px

�ei��/c�z.

The domains of definition are

z 
 0 for �I�z�and �R�z� ,

D 
 z for �P�z� , �45�

where D is the stack thickness. The field inside the stack is
denoted by �T�z�. Except for the stationary points �37� on
the k-� diagram, �T�z� can be decomposed into a superpo-

sition of the four Bloch solutions �20� of the Maxwell equa-
tion �10�

�T�z� = �
k

�k�z�, 0 
 z 
 D . �46�

This representation is meaningful if the periodic stack con-
tains a significant number of unit cells L. Otherwise, if there
are just a few layers in the stack, the representation �46� is
formally valid, but not particularly useful.

The boundary conditions at the two slab/vacuum inter-
faces are

�T�0� = �I�0� + �R�0�, �T�D� = �P�D� . �47�

The transfer matrix TS of a periodic stack is

TS = �TL�N. �48�

The relation

��D� = TS��0� , �49�

together with the pair of boundary conditions �47�, allows us
to express both the reflected wave �R and the wave �P
passed through the slab, in terms of a given incident wave �I
and the elements of the transfer matrix TS. This also gives the
transmittance and reflectance coefficients of the slab defined
as

�D =
SP

SI
=

	�P�D�	2

	�I�0�	2
, �D = −

SR

SI
=

	�R�0�	2

	�I�0�	2
, �50�

where S=cW is the Poynting vector of the corresponding
wave. In the case of a lossless stack

�D + �D = 1.

The field distribution �T�z� inside the slab is found using
either of the following expressions

�T�z� = T�z,0���I�0� + �R�0�� = T�z,D��P�D� ,

0 
 z 
 D . �51�

The above procedure is commonly used for the
frequency-domain analysis of periodic and nonperiodic lay-
ered structures involving anisotropic and/or gyrotropic
layers.

In addition to the field distribution inside the slab, we are
also interested in its eigenmode composition. The latter is
particularly important since it allows us to explain the fun-
damental difference between Fabry-Pérot resonance in the
vicinity of a degenerate band edge and a similar resonance in
the vicinity of a regular band edge. Throughout this section
we consider only the first transmission resonance, closest to
the band edge.

B. Field composition at the frequency of transmission
resonance

In the case of transmission resonance in a periodic stack
of isotropic layers, the resonance field inside the stack is a
simple standing wave composed of two propagating Bloch
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modes with opposite group velocity �see Eqs. �1�–�5� and the
discussion of them�. The introduction of anisotropy in itself
does not change qualitatively the resonance picture, as
shown in Fig. 9. The only difference is that the electromag-
netic field �T�z� inside the stack can now have both propa-
gating and evanescent components. But at the frequency of a
transmission resonance, the contribution of the evanescent
components is negligible, as shown in Fig. 10. So, basically,
one can still see the resonance field inside the stack as a
simple standing wave composed of a pair of propagating
modes with greatly enhanced amplitude, compared to that of
the incident wave. The formulas �1�–�5� still apply here, pro-
vided that the number N of unit cells in the stack is not too
small.

In Fig. 10�a� we show the squared amplitudes �intensity
distributions�

	� j�z�	2, j = 1,2,3,4, �52�

of the individual Bloch components of the resulting field
�T�z� at the frequency of the first transmission resonance
near the regular band edge g in Fig. 6�a�. The numbers 1 and
2 designate the forward and backward propagating compo-
nents of the standing wave. The evanescent contributions 3

and 4 are negligible. In Fig. 10�b� we show the squared am-
plitudes of the combined contribution of the pair of propa-
gating waves �pr�, and the combined contribution of the pair
of evanescent waves �ev�

	�pr�z�	2 = 	�1�z� + �2�z�	2, 	�ev�z�	2 = 	�3�z� + �4�z�	2.

�53�

Obviously,

�T�z� � �pr�z� . �54�

Now let us turn to the case of transmission resonance in
the vicinity of degenerate band edge d in Fig. 6�b�. There are
several features that sharply distinguish this case from the
similar transmission resonance near the regular band edge g
in Fig. 6�a�.

First of all, for a given number N of unit cells in the stack
�N=32�, the field intensity in Fig. 8�b� is by several orders of
magnitude higher, compared to that in Fig. 9�b�, in spite of
the close similarity of all numerical parameters of the respec-
tive periodic structures �see the Appendix�. In the case of
transmission resonance in the vicinity of the degenerate band
edge, the resonance field intensity increases as N4, while in
the case of a regular band edge, the field intensity is propor-
tional to N2.

The second distinction is that in the case of degenerate
band edge, the field intensity near the slab boundaries at z
=0 and z=D, increases as

	�T�z�	2 � z4, �D − z�4, DBE case. �55�

By contrast, in the case of a regular band edge, the field
intensity near the stack boundaries rises at a much slower
rate

	�T�z�	2 � z2, �D − z�2, regular BE case, �56�

which is characteristic of a regular standing wave composed
of two propagating components.

Finally, in the case of a regular band edge, the transmis-
sion resonance field �T�z� is a standing wave composed of
two propagating Bloch modes with opposite group veloci-
ties. The evanescent modes do not participate in the forma-
tion of the resonance field, as clearly seen in Fig. 10. By
contrast, in the case of transmission resonance in the vicinity
of the DBE, the role of evanescent components in the forma-
tion of the resonance field is absolutely crucial. Indeed, as
shown in Fig. 11, amplitudes of the propagating and evanes-
cent components are comparable in magnitude. More impor-
tantly, the combined contribution �pr�z� of the two propagat-
ing components does not even resemble a standing wave
with the nodes at the slab boundary, as was the case in Fig.
10�b�. Instead, comparing Figs. 8�b� and 11�b� we see that at
the slab boundaries at z=0 and D, the propagating and eva-
nescent components interfere destructively, almost canceling
each other,

�pr�z� � − �ev�z� at z = 0 and z = D ,

while the individual Bloch components �52� remain huge.
We recall that in all cases the intensity of the incident wave
�I is unity.

FIG. 9. �Color online� Transmission resonance in the vicinity of
regular photonic band edge g in Fig. 6�a� in the stack composed of
32 unit cells L. �a� Transmission dispersion at the frequency range
including the regular BE g and two closest transmission resonances.
�b� Smoothed field intensity distribution �A3� inside the stack at the
frequency �1 of the first transmission resonance 1.

FIG. 10. �Color online� The Bloch composition of the resonant
field in Fig. 9�b� corresponding to the transmission peak 1 in Fig.
9�a�. �a� Square moduli of each of the four Bloch components; 1
and 2 are forward and backward propagating components; 3 and 4
are the evanescent components, which are negligible. �b� Square
moduli of the combined contribution of two propagating compo-
nents �pr�, and the combined contribution of two evanescent com-
ponents �ev�. The evanescent modes’ contribution is negligible.
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Qualitatively, such a bizarre resonance behavior in the
vicinity of the degenerate band edge can be characterized as
follows. As we already mentioned, at the frequency �d of
degenerate band edge, three of the four solutions for the
Maxwell equation �10� are non-Bloch eigenmodes diverging
as z, z2, z3. Although the frequency �1 of the transmission
cavity resonance is slightly different from �d and, therefore,
all four eigenmodes are Bloch waves, the close proximity of
�1 to �d causes all the abnormalities seen in Fig. 11. To
describe this behavior in a mathematically consistent way,
one should start with the set of the Bloch and non-Bloch
solutions at �=�d as zero approximation. Then, using the
perturbation theory for the nondiagonalizable transfer matrix
TL��d�, one can derive an asymptotic theory for the case of
large N. The perturbation theory for the degenerate band
edge d was developed in �17�. It turns out that near the slab
boundaries at z�D and �D−z��D, the field �T�z� at the
transmission resonance frequency �1 is well approximated
by a quadratically diverging non-Bloch eigenmode, corre-
sponding to �=�d. It qualitatively explains the extremely
rapid growth �55� of the resonance field inside the slab as
one moves away from either slab boundary. It also explains
the sharp dependence �7� of the resonance field intensity on
the number N of unit cells in the stack.
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APPENDIX

1. Numerical parameters of layered arrays

The periodic array in Fig. 5 has three layers in a unit cell
L, of which two �A1 and A2� are anisotropic and have the
same thickness DA. The third layer B is isotropic with the
thickness DB. In our numerical simulations, the B layers are
empty gaps of variable thickness.

The anisotropic layers A1 and A2 are made of the same
lossless dielectric material and have the same thickness. The
corresponding dielectric permittivity tensor is


̂ = 

A + � cos 2� � sin 2� 0

� sin 2� 
A − � cos 2� 0

0 0 
zz
� ,

where � describes the magnitude of in-plane anisotropy,
while the angle � defines the orientation of the anisotropy
axes of the corresponding layer in the x-y plane. The most
critical parameter of the periodic structure in Fig. 5 is the
misalignment angle

� = �1 − �2 �A1�

between the adjacent anisotropic layers A1 and A2. This angle
determines the symmetry of the periodic array and, eventu-
ally, what kind of k-� diagram it can display. It is important
for our purposes that the misalignment angle is different
from 0 and � /2. In our numerical simulations we set

�1 = 0, �2 = �/4,

and use the following expressions for the dielectric permit-
tivity of the A layers:


̂A1 = 

A + � 0 0

0 
A − � 0

0 0 
zz
�, 
̂A2 = 

A � 0

� 
A 0

0 0 
zz
� .

�A2�

In our numerical simulations we set


A = 13.61, � = 12.4.

The numerical value of 
zz is irrelevant.
In the case of the periodic array of isotropic layers in Fig.

1�a�, we set


A = 3.78, � = 0, DA = DB = 0.5L .

2. Description of plots

In all plots of the transmission dispersion and field inten-
sity distribution, the incident wave is linearly polarized par-
allel to the Y axis.

In all plots of the field intensity distribution we, in fact,
plotted the following physical quantity:

�	��z�	2� = �E� �z� · E� *�z� + H� �z� · H� *�z��L, �A3�

which is the squared field amplitude averaged over local unit
cell. The real electromagnetic energy density W�z� is similar
to 	��z�	2. Both of them are strongly oscillating functions of
the coordinate z with the period of oscillations coinciding
with the unit cell length L. Thus, the quantity �A3� can be
interpreted as the smoothed field intensity distribution, with
the correction coefficient of the order of unity.

In all plots, the wave number k and the frequency � are
expressed in units of L−1 and cL−1, respectively.

FIG. 11. �Color online� The Bloch composition of the resonant
field in Fig. 8�b� corresponding to the transmission peak 1 in Fig. 7.
�a� Square moduli of each of the four Bloch components, 1 and 2
are forward and backward propagating components. �b� Square
moduli of the combined contribution of two propagating compo-
nents �pr�, and the combined contribution of two evanescent com-
ponents �ev�. Propagating and evanescent contributions interfere
destructively at the slab boundaries.
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